Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Saturday, June 1, 2013

A Factor Analysis of Global GABAergic Gene Expression in Human Brain Identifies Specificity in Response to Chronic Alcohol and Cocaine Exposure


Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain.

The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls.

Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure.

In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport.

Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure.

This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress-related craving and relapse.



Read Full Article    (PDF)