Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Monday, December 5, 2011

Chronic Intermittent Ethanol Exposure and Its Removal Induce a Different miRNA Expression Pattern in Primary Cortical Neuronal Cultures


Increasing evidence indicates that repeated exposure to and withdrawal from alcohol can result in persistent molecular and cellular adaptations. One molecular adaptation that occurs is the regulation of gene expression, which is thought to lead to the functional alterations that characterize addiction: tolerance, dependence, withdrawal, craving, and relapse. MicroRNAs (miRNAs) have been recently identified as master regulators of gene expression through post-transcriptional regulation. However, the role of miRNAs in the neuroadaptations after alcohol removal has not yet been directly addressed.

We employed a chronic intermittent ethanol (CIE) model in primary cortical neuronal cultures to examine the global extent of differential miRNA expression using a TaqMan real-time PCR miRNA array.

Sixty-two miRNAs were differentially expressed after 10 days of CIE (CIE10) treatment (n = 42 with false discovery rate [FDR] < 0.05 and fold change > 2) and 5 days post-CIE (P5) treatment (n = 26) compared with untreated control values. Compared to CIE10, ethanol (EtOH) removal experience in P5 induced a distinct expression pattern, including 20 differentially expressed miRNAs, which did not exhibit a significant change at CIE10. The predicted target molecules of EtOH removal-induced miRNAs function mainly in the regulation of gene transcription, but also function in neuron differentiation, embryonic development, protein phosphorylation, and synaptic plasticity. Interestingly, some of the miRNAs differentially expressed 5 days after CIE treatment were found to cluster on chromosomes near CpG islands, suggesting that they share functional similarity by targeting alcohol-related genes.

Taken together, these results suggest a potential role of differentially expressed miRNAs in mediating EtOH removal-related phenotypes.


Read Full Abstract

Request Reprint E-Mail:

qiang@uthscsa.edu